Tier 3 Pre-construction Bat Acoustic Monitoring Studies

Cris Hein

Bats & Wind Energy Program Coordinator

Bat Conservation International

U.S. Fish & Wildlife Service Training Broadcast Series 31 July 2013

Purpose of Tier 3 Bat Monitoring Studies

- Ist opportunity to conduct quantitative & scientifically rigorous studies
 - Activity patterns of bats
 - Potential risk of a proposed facility

 Acoustic surveys are a practical method for monitoring bats at wind energy facilities

- Lower cost
- Less invasive
- Long-term

Tier 3 Questions?

- Are species of concern present or likely to use facility
- What is the distribution, relative activity, & behavior of species of concern
- Is there a potential for significant adverse impacts
- How to minimize &/or mitigate impacts

Field Methods

- Consistent methods & metrics
 - Study design will vary from site to site
- Multiple tools may be required
 - Acoustics, mist-netting, radar, roost exit counts
- Duration & intensity to accurately characterize presence
- Multiple years to establish trends & account for temporal variation

Field Equipment

- Hardware
 - Objectives
 - Cost
 - Expertise
 - Data storage
 - Power requirements
 - Weatherproofing

Analysis

- Software
 - Detector type
 - Objectives
 - Cost
 - Expertise

- Qualitative
- Quantitative

Bat Acoustic Surveys

- # of detectors varies based on habitat
- Place detectors at multiple heights
- Conduct surveys when bats are active
 - Minimum spring-fall
 - In warmer climates, year round surveys
- Complimenting acoustic surveys
 - Mist-netting: demographic data & DNA
 - Radiotelemetry: roost locations & home ranges

Limitations to Acoustic Surveys

- Cannot ID individuals or determine abundance
- Detectability
 - Cone of reception small
 - Call rate, frequency, intensity, orientation, weatherproofing
- Sampling intensity
 - Temporal & spatial variability
- No consensus on what constitutes risk

Patterns from Pre-con Acoustic Studies

- Variation in acoustic data can be high
- Peak activity in late summer-fall, coincides with migration & mating
- Peak activity at low wind speed
 - Up to 90% occurs below 6 m/s
 - High percentage of activity occurs below 4 m/s
- Higher activity occurs on warmer nights
 - Activity may relate to insect patterns or thermoregulation

Spatial Variation

Low Freq

Hoary Bats

2009 2010

Temporal Variation (within and between years)

Temporal Variation (within nights)

Activity in Relation to Weather

Temperature

High Freq

Low Freq

— Hoary Bats

Using Acoustic Data to Predict Risk?

- Limited ways to reduce fatalities
- Predicting risk a high priority
 - Site in low risk areas
- High activity = High fatality?

- Limited data
- Study design: annual variation, habitat, height, metrics

Fitted Line Plot fatalities/MW = 2.659 + 1.312 Passes/det-nt

Next Steps

- Pre-con studies are valuable, particularly in new areas
- Synthesize data
 - By height, region, species or phonic group
- Species identification
- Enhance technology
- Transparency
- Communication

